
1

Application
Modernization
2021
Luc Gorissen

2

Table of Contents
1. Introduction 3
2. Applications in the Cloud 5
2.1 Cloud Phase 1: Lift-and-Shift 8
2.2 Cloud Phase 2: Re-factoring 10
2.2.1 Cloud Native Application Development 12
2.2.2 Cloud Native Technologies 15
2.3 Cloud Phase 3: Application Modernization 19
3. Digital Transformation and Application Modernization 24
3.1 Business opportunities 25
3.2 Organization aspects 30
3.3 Application Modernization success factors 33
4. Summary 35
 About Rubix 37
 References 38

3

1. Introduction
Late 2011, a colleague pointed out AWS Cloud to me. It sounded interesting enough, so
I got started and installed a middleware platform on it. I specifically remember being
pleasantly surprised by the powerful servers that were at my disposal. When thinking
about use cases, there were also some concerns about costs, network latency, security,
and some more. Then, early 2012 I followed a training for the same middleware platform
that I already ran in the AWS Cloud. On Monday, the training started, but the trainer
unfortunately had some difficulties with getting the training environments up and running.
So, Monday evening, I copied my environment and the remaining days of the week, we had
four fully functioning training environments. All it took was some simple copying actions
and $60,- from my credit card. I was sold: running applications in the cloud was going to
be big!

Now it’s 2021 and the cloud is no longer
raising eyebrows. Running IT workloads
in the cloud is – from an infrastructure
point of view - the main goal for most IT
departments. Public clouds were ‘invented’
a bit over 10 years ago and some big
promises were made. Running applications
in the Cloud would make our IT lives much
easier, flexible, less costly, more scalable,

etc. Also, the business department would
finally get what they always wanted – with
the right quality and in time. But, did they
really?
Over the years, it became clear that running
IT workloads in the cloud was different
from running them in an on-premises
environment. Especially for bespoke
applications. Just doing a simple lift-and-

shift, i.e. running the application on ‘a
computer in the cloud’ often turned out
to be costly and more importantly, did
not deliver the anticipated advantages.
It became clear that applications which
were to benefit from what the cloud had
to offer, had to be built in a special way,
with technologies that were developed
especially for that purpose. The
terms being coined were ‘cloud native
applications’ that were developed using
‘cloud native technologies’.
After it became clear how these cloud
native applications had to be built, and
the required technology was available,
there was one remaining hurdle that had
to be taken: how to deal with existing large
bespoke applications? These applications
often represented a significant investment,
but were not fully suited to run successfully
in the cloud. Fortunately, it turned out not

4

all such applications have to be re-built
from scratch. Some will, but for others it is
sufficient to only change them partially, in
order to make them deliver their business
value successfully in a cloud environment
for many years to come.
But running cloud applications is not only
an IT department thing: modern cloud
applications and how they are developed
can bridge the gap between business and
IT – though that does require changes in
how IT is embedded in an organization.
Because a faster application development
process requires close alignment between
business and IT.
To assist you in finding your way on your
Application Modernization journey, this
white paper describes the strategies to
modernize applications, i.e. to run them
in the Cloud. Additionally, it sets the
organizational context in which this can
successfully be done.

Enjoy!

5

2. Applications in the Cloud
It was only in 20091, 2 that NIST gave their official definition of what ‘Cloud’ was and what
to expect of it. Over the course of time, it became clear that most organization’s IT can
benefit greatly from the public cloud services. The cloud delivered its promises of lower
IT spending, hyper scalability, increased speed and agility, lower operations costs, more
focus on business value, etc. Including the birth of a completely new range of technologies
that is also geared to maximizing the cloud benefits. Nowadays, many organizations have
a cloud strategy in place that outlines how they want to take advantage of what cloud has
to offer.

One of the topics that a cloud strategy
has to address is how to migrate bespoke
applications to the cloud. Already in an early
stage, the options for migrating applications
to the cloud were identified3, 4:

1. Re-host: make no changes to the
application, but run it on a computer in
the cloud. Also known as lift-and-shift

2. Re-platform: make minimal changes to
the application by incorporating some
of the advantages of the cloud. E.g.

replace an on-premises Oracle DB by an
Amazon RDS DB

3. Re-purchase: replace the application
by another application

4. Refactor: completely rebuild the
application, in order to have a better fit
with the possibilities the cloud offers

5. Retire: abandon the application
6. Retain: keep the application in the on-

premises data center, usually with the
intention to abandon it.

Which of the above options is chosen is a
lifecycle question, and its answer should
match with the business requirements.
Lifecycle management topics are often
difficult to deal with, as they usually
are interwoven with an organization’s
historic vendor choices, sourcing policies,
engineering culture, etc. This may
complicate a discussion that should be
centered around how IT solutions can meet
the business requirements. To structure
the lifecycle discussion, the application and
its technical realization must be separated:

• Application lifecycle: will the
application be able to meet future
business requirements? Especially for
bespoke applications, it is important to
understand how the current technical
state influences the feasibility to
incorporate future requirements.

6

Lift-and-shift

Migrate application as-
is to the cloud

Build a new application
with new concepts and
technologies Incorporate new

concepts and
technologies into
existing applications

Re-factor

Application modernization

Examples of complicating factors
are ‘bad design’ and ‘technical debt’,
which both may complicate further
development work on the application.

• Technology lifecycle: what is the
roadmap of the technologies involved
in running the application? For example
a technology stack that is no longer
supported may require a partial
application refactoring.

The application and technology
lifecycle, together with input from all
involved application stakeholders,
are the input for defining an optimal
application migration strategy.

In the early days of cloud, execution of an
application migration was difficult, because
no best practices existed on how to best
execute the various migration strategies.
Over time, these best practices have arisen
and evolved. We distinguish three phases
that each contributed a certain method:

Cloud Phase 1: Lift-and-Shift
The focus of organizations was on
migrating existing, on-premises IT to
the Cloud. The migration of bespoke
applications was ‘part of the IT
infrastructure migration to Cloud’.

Cloud Phase 2: Refactoring
It became clear that a mere as-is migration
of bespoke applications to the cloud did
not deliver on the cloud promises. Focus
with respect to bespoke applications
shifted to refactoring: building the
application from scratch – with new
cloud technologies - in such a way that it

maximally benefits of what the cloud has
to offer. This is also referred to as cloud
native application development.

Cloud Phase 3: Application Modernization
The focus is currently shifting to the larger
applications, that often implement the
core business processes and represent
a large investment. These applications
are often complex, for example because
of added functionalities and integrations,
and can therefore not be refactored
easily. As a consequence, future business
requirements may be hard if not impossible
to implement.

7

In such situations, a tailored strategy
can be designed in which the application
evolves in steps wherein new business
requirements are implemented. These
steps are – where necessary – realized
in accordance with the modern way of
building cloud applications. This results in
a partially modernized application– only in
the parts where it is justified by business
requirements. In doing so, the investment
in the application is protected as much as
possible.

Do take note that depending on business
requirements, a lift-and-shift migration to
a public cloud or a complete refactoring
are still valid options. As well as the other
options from the ‘original’ list of six. The
best choice depends on your organization’s
goal and context.

8

2.1 Cloud Phase 1: Lift-and-Shift

In 2006, Amazon launched its Elastic
Cloud Service. Other parties like Google
and Microsoft followed and it was the NIST
cloud definition in 2009/20111, 2 that helped
us understand what we were to expect
from ‘the Cloud’. The cloud paradigm was
quickly embraced by both providers as well
as companies. Providers like Amazon and
Google had a head start. Amazon, because
they were visionary: they had excess
computing resources from their webshop,
and decided to offer theirs to other
companies. Google also got off to a quick
provider start because of their experience
with large, world scale implementation
of applications. Other companies quickly
followed with acknowledging the potential
of cloud computing and embracing the
concept. Some companies, e.g. Dropbox
and Netflix, provided services that could
not have been realized without cloud

computing. Other companies set their
first cloud steps by using a non-business-
critical SaaS application, e.g. an HR
application.

By now, after the first decade of cloud
computing, most companies have cloud
incorporated into their IT strategy, often
with the goal of moving all their IT into the
cloud and abandoning their data centers.
But, what also became clear is that running
existing applications on cloud computers
will most likely not realize all of the
expected cloud benefits. For example:

• ‘that Cloud DB with lower costs’ is
never realized

• running an application in the cloud
does not make it a better fit with the
future needs

• an application does not have the

horizontal scalability that was expected
• introduction of new business

functionality into an application is still
difficult …

However, an organization that wants to
move all applications to the Cloud quickly,
can’t be bothered to design an individual
strategy for all its applications. The sheer
amount of applications, their interactions,
the application complexity and peculiarities
will be too much to handle in an already
complex program to move to the Cloud.
When confronted with this, organizations
often change their strategy into what
is best described as ‘let’s first re-host
all applications in the Cloud and then
take it from there’. This results in a more
manageable project that can be completed
in a more acceptable time.

9

Lift-and-
shift

Lift-and-
shift

Lift-and-
shift

Start Migration project

?

End

And this is the exact situation where
many organizations find themselves
in nowadays: they have migrated large
chunks – if not all – of their IT to the
cloud, at high costs. Only to discover that
they have high monthly cloud costs and
not the expected benefits they thought
of in their original business case. All of
these benefits of lower IT spending, hyper
scalability, increased speed and agility,
lower operations costs, more focus on
business value … are only partly met. I ask
you: what else is to be expected when you
run your existing applications on someone
else’s computer!?

10

Applications that were built to run in on-
premises data centers don’t automatically
benefit from what the cloud has to offer.
For example, they may not be designed
for horizontal scalability. Or a switch to
another database may be very hard, if not
impossible. Or their internal design may
make it hard to include new functionality.
Or their accompanying development tools
and development life cycle may not be up to
the demands of quick and iterative software
development. Or [fill in one of many other
reasons].
Building applications that truly benefit from
what the cloud has to offer, aka refactoring,
was at first only achievable for companies
like Google, Netflix, Spotify, Facebook,
SoundCloud, LinkedIn, Uber, Zalando, etc.
These companies not only have extreme
requirements, but also the means to develop
applications that meet these requirements.

Often, these companies had to develop new
technologies, like for example LinkedIn,
that developed Kafka when they needed a
high throughput event processing platform.
These technologies are known as cloud
native technologies: technologies that are
used to build applications that unleash the
cloud’s potential. Technologies that are
built to live in a cloud environment. When
you build a modern cloud application, your
application platform naturally will consist of
technologies that didn’t exist 10 years ago.
Another big change with respect to
technology comes from the cloud providers,
who are making cloud services available
as ‘managed cloud services’. This shift
means that the cloud provider not only
offers specific technology platforms,
but also will do the corresponding cloud
operations tasks, up to and including
Lifecycle Management. Using technology

2.2 Cloud Phase 2: Re-factoring

11

Technologies

Best practices

Cloud Native
applications

as a managed service in your IT solutions is
therefore much faster and easier.
Of course, changing technologies is not
the only reason for refactoring gaining
in popularity. There is also a better
understanding of how to build applications
that make optimal use of the possibilities
offered by the cloud. The best practices
for cloud native applications are well
understood by now.
Conclusion: with a better understanding of
how to develop cloud native applications
and with the right cloud native technologies
at hand, application refactoring became
a viable option for more and more
organizations!

12

2.2.1 Cloud Native Application Development

Google, Netflix, Spotify, Facebook,
SoundCloud, LinkedIn, Uber and Zalando
are typical examples of companies that
build Cloud Native applications with
extreme requirements on scalability, data
processing volumes, availability, etc. Their
cloud applications impacted the way cloud
applications are developed nowadays.
It resulted in what is often referred to as
Cloud Native Application Development,
which is defined as:

The development of bespoke
(enterprise) applications that
make the best possible use of

the possibilities that modern cloud
technologies have to offer.

Meaning, cloud native applications must
deliver business value: quick, at low cost
and of required quality, by making the best

possible use of what the cloud has to offer.
Typical cloud native applications have the
following characteristics:

Low cloud resource usage
Modern cloud native technologies all focus
on a small resource footprint: low usage of
memory, cpu and network. They do so in 2
different ways. On a platform level, there is
on-demand scaling, both scaling out and
scaling in. The more demand for capacity,
the more resources are claimed by the
platform: scale out. When the demand for
capacity decreases, those resources are
released: scale in. This scaling out/in is
preferably highly automated. On top of that,
the new emerging framework technologies
to build the application’s business logic
have considerably smaller footprints. A
typical examples is Kubernetes (platforms)
and Micronaut (framework).

Flexibility for change
Cloud native applications and their
technologies aim for distributed
applications that consist of parts –
microservices or functions – that are
maximally independent of each other.
This is achieved by pursuing a maximum
separation of concerns, which on a system
level often translates to a Domain Driven
Design approach 12, 11. As a consequence,
the various application parts can be easily
replaced by a modified version.

High developer productivity
The cloud native frameworks strive to
enable developers to focus more and
more on implementing business logic
instead of coding boilerplate stuff. Also,
the availability of managed cloud services
reduces the dependency on system
administration, thus further improving

13

developer productivity.
Furthermore, development best practices
like CI/CD and automated tests further
improve the ability to quickly deliver new
application functionality whilst staying in
control.

Hyper scalability
A key characteristic of cloud native
applications is horizontal scalability. But
having the right platform and framework
technology in place is not enough: the
application must be built as a distributed,
stateless application where the different
parts can scale independently according to
the capacity demand. A typical scalability
bottleneck are ACID transactions on a
traditional relational Database. Elimination
of ACID transactions requires the adoption
of the BASE – a data consistency
model where the data in the system is
eventually consistent across the whole
system. Refactoring an application that
relies on ACID database transactions

to an application that relies on eventual
consistency of data has a major impact on
how the application is built, and hence on
the developer’s work. This is also the main
reason why existing current applications
often can’t easily be made to scale
horizontally.

Reduced operations effort
The operations effort for a distributed
application is higher than for ‘a monolith
application with its single application log
file’. This is addressed in many different
ways, mostly focusing on more and
more automating of operations tasks. An
obvious example is the introduction of
managed cloud services, where a lot of
the operations work is shifted to the cloud
provider. Also, operations tasks are highly
automated for areas like CI/CD, automated
tests and observability.

14

More robust systems
Cloud native applications are built in
such a way that failures of application
components should not lead to a complete
failure of the whole application, but only to
defaulting specific parts of the application.
This, together with platform capabilities
for auto-restart and auto-healing of
applications, can significantly contribute to
application functionality availability.

New cloud technologies
New cloud technologies are often available
as managed cloud services and therefore
easy to incorporate in applications. Typical
examples here are AI, face recognition, IoT
platforms etc. All available with just a few
mouse clicks and a credit card. And if no
longer needed, they’re disposed of just as
quickly.

Mind you, these characteristics do not
magically result from picking the right
technologies: it is crucial that they are

incorporated in the design and building of
the application. This is often referred to as
Twelve-Factor Apps13.

15

2.2.2 Cloud Native Technologies

The previous sub section touched upon the
characteristics of cloud native application
development. In order to properly develop
applications with these characteristics,
an enabler is needed: Cloud native
technologies. Technologies that are
built to live in a cloud environment, like
Kubernetes, Containers, Kafka, GraphQL ,
GraalVM, Serverless functions, DynamoDB,
Jaeger, Istio, Prometheus, Terraform,
etcd, Helm, Micronaut. As mentioned,
when building a modern cloud application,
your application platform will consist of
technologies that didn’t exist 10 years ago.
These technologies can be categorized in
three service models.

IaaS, PaaS and SaaS
The NIST cloud definition1 distinguishes
these three different service models to
recognize what capabilities are provided to

the customer:
1. Infrastructure as a Service – IaaS:

provides computing resources like
processing, storage and networks;

2. Platform as a Service – PaaS: provides
programming languages and tools that
can be used to deploy applications.
Many consider PaaS to be THE
application developer’s toolbox.

3. Software as a Service – SaaS: provides
applications.

What service model(s) an organization
decides to use, is an important decision.
For example, focus on the IaaS service
model will limit vendor lock-in. But using
advanced PaaS building blocks may speed
up application development and reduce
operations effort significantly. And the
SaaS service model could very well be
part of a buy-before-build approach. A

detailed discussion about how Enterprise
Architecture principles guide the choices
for the cloud service models is outside the
scope of this paper, however, specifically
relating to application migration to the
cloud:

• IaaS is mainly used in the lift-and-shift
of an existing application to the cloud.

• PaaS is mainly used for developing
bespoke applications.

• SaaS is mainly used when replacing an
existing application with an application
that the cloud provider offers.

PaaS building blocks
Many cloud providers have a PaaS offering
with many application technologies.
Technologies that once would have taken a
long time to implement in an on-premises
data center are now readily available.

16

Examples are:
• Container platforms like Kubernetes
• Artificial Intelligence (AI) and Machine

Learning (ML)
• Virtual and Artificial Reality
• IoT platform
• Integration platforms and API

Gateways
• Data steaming solutions like Kafka
• Observability solutions like Elastic

Observability
• Data analytics and search engines
• Content Delivery Network solutions
• Databases
• Face recognition
• Blockchain
• Digital assistant – chatbot

When such technologies are needed for
an application, using readily available
PaaS offerings should be considered.
Otherwise, applying the desired tech can
proof too complex or too costly to handle.
In general, using as many PaaS offerings

as possible – or managed cloud services
as they are often referred to – makes
sense. Picking the right PaaS services will
enable the application developer to focus
on business logic and minimize time spent
on developing boilerplate code. And, of
course, delegate a lot of operations and
lifecycle management tasks to the cloud
provider.

The accessibility to PaaS services is
continuously being improved, partly
because many cloud native technologies
are maturing themselves, which translates
to more and better support for non-
functionals. Simultaneously, the cloud
providers are improving the accessibility of
their PaaS building blocks, often by adding
abstraction layers or combining PaaS
building blocks. The most advanced PaaS
building blocks are nowadays labelled
as ‘serverless’, i.e. a PaaS building block
where the underlying hardware is no longer
visible to the consumer but completely

managed by the cloud provider.

Example
A typical example of a well known
cloud native technology is container
management platform Kubernetes. The
Kubernetes platform is currently evolving
into a direction where it focusses solely
on ‘managing containers’. Other, non-
core parts are abstracted through the
introduction of various APIs:

• CRI – Container Runtime Interface: to
support Container Runtimes other than
Docker

• SMI – Service Mesh Interface: to
support different service mesh
implementations

• CSI – Cluster Storage Interface: to
support various types of storage

• Cluster API: for managing Kubernetes
clusters

17

As a result, AWS for example can offer a
Kubernetes platform that:
• supports AWS Firecracker runtimes,
• uses the AWS App Mesh as service

mesh,
• uses AWS Elastic Block Storage,
• and is managed within the AWS cloud

via the Cluster API.

Then you also have RedHat OpenShift; a
Kubernetes platform that:

• is currently moving from Docker to
CRI-O container runtime,

• uses the Istio service mesh,
• uses amongst others RedHat Ceph

storage,
• and is managed via the RedHat

OpenShift console

However, these two examples are not
complete application platforms. To use
them as an application platform , additional
components have to be added, like tooling

Service
Mesh

Interface

Container
Runtime
Interface

Cluster
Storage

Interface

Cluster
API

for Observability, CI/CD, automated testing
etc. RedHat OpenShift already contains
some pre-selected add-ons and integrates
those into the OpenShift building block.
Whereas e.g. the Oracle Container Engine
for Kubernetes, is a bare Kubernetes
offering where the developer has to add
all of these components himself and do
lifecycle management for the complete
combination.

Kubernetes is nowadays the de-facto
standard for container management
platforms. However, there are cloud
providers that offer simple, managed
services for running containers.
Examples are Azure Container Instances
and AWS Fargate. These managed
services do not offer all of the Kubernetes
functionalities, but they can run containers.
And the cloud provider manages the
underlying Kubernetes and hardware.
Simple and easy accessible!

18

In short, the selection of a PaaS building
block for running containers is not
straightforward and requires a careful
selection process. The next paragraph
is meant to help you on your way in this
process.

PaaS building block selection
When developing an application, the right
PaaS building blocks have to be picked:
they must support the cloud native
application design. Technology is a key
enabler!

Using PaaS building blocks to build an
application often results in adopting a
multi-cloud strategy. This is because PaaS
building blocks differ greatly from one
public cloud provider to the next. E.g. one

cloud provider may have an excellent AI/
ML offering, whereas another provider
has a great IoT platform and yet another
has a great chatbot. With a best-of-breed
strategy, this will lead to a multi-cloud
solution. It should then be carefully
considered whether the expected benefits
outweigh the added complexity of a multi-
cloud solution.

One more thing about refactoring
A fair word of warning is in order.
Developing cloud native applications is
more than just ‘putting the right application
design and technology in place’. Some
considerations are:

• Developing such applications requires
a skill set that is likely new to people.

• Application scopes need to be carefully
set, i.e. applications that cross
organizational borders may be severely
impacted in their flexibility by having
too many stakeholders that need to
be consulted when making decisions.
A typical consideration is to let IT and
organization be a mirror image of each
other, as described by Conway’s law5.

• A shift to a more DevOps style of
working can be a large step for an
organizations.

Especially organizations that are new at
cloud native application development must
take these considerations into account.

19

2.3 Cloud Phase 3: Application Modernization

Over the last years many best practices
were developed around how to migrate
applications to the cloud and how to build
new applications for the cloud. But that
does not address the issue of the huge
installed base of bespoke applications
that – when moved to the cloud – do not
benefit from the cloud. However, there is
an increasing understanding that these
applications can often be modernized.
Such Application Modernization updates
legacy applications by replacing or adding
new cloud concepts and technologies to
the existing application. Thus, application
modernization adds new business value to
existing applications whilst protecting the
current investment.

Strangle the monolith
A good approach to the modernization
of existing applications is using the

Strangler Fig pattern14. The pattern was
first described by Martin Fowler – way
back in 2004 already! The approach the
Strangler Fig pattern takes is that specific
application parts are extracted from the
monolith application and implemented as
separate microservices. This involves the
following steps15:

1. Design the application
A to-be design of the application is
required. A design that ensures that
the application has optimal flexibility
for handling future changes. A best
practice to make such a design is to
apply the concepts of Domain Driven
Design (DDD)12.

2. Choose an application part to
modernize
A specific part of the application
that has to be modernized should

be selected. Preferably, the selected
application part has limited
dependencies on the other parts
of the application, thus limiting the
technical risk of the modernization
step. In general, there will be a trade-off
between business value and technical
risks. It is important to strive for a good
balance between the two.

3. Plan out the microservices within the
selected application part
Design the microservices that are to
be built for the selected application
part, including how their data will be
decoupled from the data store(s) of the
monolith.

4. Plan a Strangler Façade
Planning for a Strangler Façade means
that an implementation pattern must
be designed that describes how the
new microservices will co-exist with

20

the monolith. This should cover how
the new implementation of the selected
application part will be introduced
and co-exist with the existing
implementation. The next step is
planning how the existing functionality
is best removed from the monolith.

These steps are illustrated in this figure:

While the chosen architectural approach
and technologies can differ, the steps
themselves clearly show that Application
Modernization can be done in a step-by-
step approach. It is important to point out
that Application Modernization can stop
when no further modernization steps can
be identified to create additional business
value. This ensures an optimal protection
of the investments that were already done
in the monolith.

Application Modernization is not only
about replacing existing functionalities
with a new, better implementation. The
described approach can also be used
to add new functionalities to an already
existing application.

Cloud native application characteristics in
Application Modernization
In the section on developing cloud
native applications, the characteristics
of cloud native applications were listed.

When a new cloud native application is
developed, all of these characteristics can
be met, when taken into account from the
start. However, modernizing an existing
application that does not have all of these
characteristics is different. It makes no
sense to just blindly pursue all of these
characteristics. It only makes sense if the
effort is justified by the business value that
it yields:

UI

Monolith

UI

Strangler Façade

Monolith New

m
ic

ro
se

rv
ic

e
m

ic
ro

se
rv

ic
e

m
ic

ro
se

rv
ic

e
m

ic
ro

se
rv

ic
e

UI

Strangler Façade

Monolith New

m
ic

ro
se

rv
ic

e

m
ic

ro
se

rv
ic

e

m
ic

ro
se

rv
ic

e

m
ic

ro
se

rv
ic

e

m
ic

ro
se

rv
ic

e

m
ic

ro
se

rv
ic

e

m
ic

ro
se

rv
ic

e

21

 z Lower resource usage
For a simple enterprise web application
with 20 users, resource usage is not
that big of a deal. The costs of a couple
of Virtual Machines with a public cloud
provider will by far outweigh the costs of
modernizing the application. However,
things are different when it concerns an
application that is offered – as a SaaS
application - to many customers. Then,
the resource consumption really starts
to matter, as it is directly taken out of
your profit. Imagine a lot of VMs doing
nothing outside of office hours… Similarly,
if an application has to deal with spiky
or unpredictable workloads. The parts of
the application that cater for most of the
unused Cloud resources can be addressed
by refactoring them into microservices that
have a better resource usage profile.

 z Flexibility for change
When an application is changing rapidly,
and when multiple teams are working on

the same application, the application must
easily absorb changes. This capability can
be largely improved be breaking out the
rapidly changing parts and implement them
as microservices. These microservices
should have a single responsibility and
clear boundaries, something called
a bounded context in Domain Driven
Design12. The implementation of the
microservices should then be done in such
a way that deployment of new versions
all the way into production is largely
automated. Including automated tests.

 z High developer productivity
Developer productivity is greatly enhanced
by using the newest cloud native
technologies. They ensure that developers,
more than ever, can focus on business
logic, instead of spending much time on
boilerplate code. Examples of application
parts that may benefit from a replacement
that yields higher developer productivity,
are ‘that old UI framework’ or ‘that

homebrew business rule engine’. The first
can be replaced by a low-code platform
front-end, and the second by a PaaS
Rule Engine offering by your public cloud
provider. If these technical components
have a lot of future implementation work
planned, replacement may be worthwhile.

 z Hyper scalability
Best practices show that it is best to start
an application as a monolith, which is
then broken up into microservices when
the application user base keeps growing9.
The advantage of this approach is that
the application’s behavior is already
understood, making it easier to identify the
right microservices needed to be split off.
Still, there can be good reasons to deviate
from this best practice. Maybe the user
base starting from day 1 is known and very
large. Maybe the expected user base is not
known at all, but the application may need
to scale up within a period of days. Or the
workloads are very spiky by nature.

22

Reduced operations effort
Similar to ‘high developer productivity’,
the newer cloud native technologies also
aim to reduce operations effort. Parts of
an application may greatly benefit from
modernization steps that bring better
monitoring, better CI/CD capabilities,
more flexible scaling, etc. to the table. For
example, there can be significant business
value in being able to often release new
functionality or to release functionality to
a limited user base. In this case , it makes
sense to move to a CI/CD implementation
and application platform that supports
blue-green and canary-in-the-coalmine
deployments.
From an operations effort point-of-view, it
is important to understand the managed
services that a cloud provider offers.
The aim with these services is to shift as
much of the operations work as possible
to the cloud provider. The more managed
cloud services can be incorporated into
an application, the lower the operations
effort. Beware that there may be a trade-off

with managed services. Often, offloading
operational tasks also comes with
constraints on how the managed service’s
technology can be used.

More robust systems
With distributed applications, the failure
of one of the components may likely
only lead to a partial application failure.
Whether that aspect is important for
a specific application depends on the
application functionality and the business
impact of complete application failures.
Imagine a webshop application having a
failure that affects the tracking of placed
orders. If that failure would result in a
complete application outage, it would
have great impact. If, on the other hand,
only the part of the application for tracking
placed orders would not be available, but
customers can still shop and place new
orders, the impact would be significantly
less. You need to determine if this is
important for your application. If yes,
it should be considered to break the

application into separate components that
can be run on a platform with auto-healing
capabilities like Kubernetes. Note however,
that a robust system requires more than
‘just running it on Kubernetes’. In our
example: the other application parts must
be able to handle the failure of the ‘order
tracking’ part. Building such application
landscape requires an overall strategy to
handle these partial failures.

New cloud technologies
New cloud technologies can contribute
to business value in several ways: new
functionality can be implemented much
faster, more advanced technologies
suddenly come within reach, and the
cost of failures is minimized as no large
up front investments are required. This,
together with collected best practices
from the early adopters, will make adding
new technologies to an application more
feasible than ever.

23

Application Modernization or rebuild?
Application Modernization makes sense
in a lot of situations: only changing some
specific aspects of an application may
offer the business their required value.
On the other hand, a complex Application
Modernization process may in the end be
more costly than a complete rebuild from
scratch. The answer to this question not
an easy one. It all centers around what the
future of the application looks like from a
business requirements point of view: the
application roadmap. When this roadmap
is clear, different Application Modernization
steps and even a complete rebuild can
be evaluated, eventually resulting in an
optimal approach for a specific application.

An Application Modernization example
A good example on Application
Modernization is shown in this video10. This
example was presented on AWS re:Invent
and concerns the Amazon shopping
application.

This presentation covers two Application
Modernization steps:

1. Flexibility for change: breaking up the
application into microservices in order
to be able to incorporate changes
much quicker.

2. Reduced operations effort: Moving
from a self-managed Kubernetes
platform to a managed service
platform, i.e. AWS EKS.

Some takeaways:
• Even a multinational as the AWS

shopping branch of Amazon has
only recently (2017) broken up their
monolith shopping application into
microservices.

• Also this multinational found
Kubernetes a too difficult platform to
manage by themselves. It took away
focus from the actual goal: improving
the shopping application. Hence, they
decided to switch to a Kubernetes
platform as a managed service from a
cloud provider – obviously AWS EKS in
this case.

https://www.youtube.com/watch?v=M-Fh0OzliJI

24

3 Digital Transformation
and Application Modernization
An important aspect that has not been mentioned so far is the organization. The optimal
scenario for Application Modernization or even a complete rebuild should also be a
scenario that your organization can handle. Can you quickly adopt new technologies? Can
you handle quick deliveries of new versions of an application? It’s important to consider
the bigger picture here, with the bigger picture being Digital Transformation.

A formal definition of Digital
Transformation is ‘the adoption of digital
technology to transform services or
businesses, through replacing non-digital
or manual processes with digital processes
or replacing older digital technology with
newer digital technology’17.
In practice, for your organization it may
look like this:

• The (IT) world is rapidly changing,
partly driven by the impact that cloud

has, and it’s difficult to establish the
right way forward in business and
organizational matters.

• The business sees an ever increasing
number of opportunities, but also a
corresponding number of new threats.

• Cloud technologies are more powerful
than ever, but applying them the correct
way is complex.

• Your (IT) organization is working harder
than ever to keep up and adapt where
necessary.

Application Modernization – as it is all
about adding or replacing parts of existing
applications with new cloud concepts and
technologies – clearly has its place in a
Digital Transformation program. So in this
section we will address the business and
organizational aspects of Cloud and more
specifically Application Modernization.
Finally, some success factors are shared
for Digital Transformation programs that
are linked to Application Modernization.

25

3.1 Business opportunities

It is important to realize that the current
IT technology trends are more than a
mere replacement of some technical
components by better ones. The new cloud
native technologies are part of what is
described by the World Economic Forum
as ‘the Fourth Industrial Revolution’18. The
Fourth Industrial Revolution is building
on the Third – the digital revolution. What
makes it different is that a fusion of
many technologies – physical, digital and
biological –is happening at an exponential
pace. It wouldn’t be a revolution of course
if it wasn’t disruptive, but the most striking
part is the velocity at which the disruptions
happen!

The new cloud native technologies are a
part of this Fourth Industrial Revolution and
often serve as a technology push in general
for new business opportunities. Examples of

some relevant IT technology trends are6:

 z Hyperautomation
According to the Gartner definition,
hyperautomation from technology point
of view ‘deals with the application of
advanced technologies to increasingly
automate processes and augment
humans’. Hyperautomation is about
Robotic Process Automation (RPA) and
intelligent Business Process Management
Suites (iBPMS) where the traditional
business process automation is extended
with software robots (bots) or AI.
Hyperautomation is also about including
the information from a Digital Twin
Organization20 in the application. It is this
combination of technologies that makes
new applications possible. However, such
new applications will have a huge influence
on how employees interact with them.

Therefore, they can only be introduced
successfully when employees are involved
from the start.

 z Multiexperience
Developments like Artificial Reality (AR),
Virtual Reality (VR) and Mixed Reality (MR)
will have more and more impact on how we
interact with the digital communications
world around us. Simultaneously, input and
output devices are changing at rapid pace.
Imagine Apple stopping the production of
iPhones in a couple of years and replacing
it with …?
Huge changes on how we interact with
both systems and other humans are
expected and some are already here. For
example, product visualization in real
estate and webshops or VR-based training
are not hard to imagine.

26

 z Edge computing
Edge computing – and fog computing
– refer to solutions where (part of) the
application functionality is moved to
edge devices. These types of distributed
solutions were originally driven by IoT
solutions that needed to avoid latency
and need for bandwidth. However, the
edge devices keep evolving into drones,
autonomous vehicles, robots, … bringing
new applications within reach. These
solutions are also redefining the cloud
as we know it: at first, the cloud was
centralized, but edge computing has
decentralized it.

 z Distributed cloud
When we refer to ‘the cloud’ in this paper,
we are mostly referring to Public Cloud
services, i.e. services that are offered from
a Public Cloud provider’s data center. The
term Private Cloud refers to services with
cloud characteristics like e.g. scalability,
but then offered from a company’s private

data center. Hybrid Cloud refers to an
integration of both Public and Private
Cloud services.
Implementation of Private Cloud services
with all expected cloud benefits proved to
be hard. Implementation of combinations
of technologies in a Hybrid Cloud also
proved to be hard.
This has led to the Distributed Cloud,
in which Public Cloud Services are
offed to locations outside of the Public
Cloud provider’s data centers. The
Public Cloud provider then still executes
operations tasks like maintenance and
updates. Advantage of this solution is
that requirements like on data location
and on latency can still be met, without
compromising the other Cloud advantages.
Distributed Cloud, e.g. AWS Outposts,
technically delivers on most of the
requirements of a Hybrid Cloud approach.

Obviously, this list is far from complete.
Trends like Internet of Things, Artificial

Intelligence and Machine Learning are
not mentioned, but are expected to have
a significant impact in the years to come.
And then, newer trends like Quantum
Computing are quickly evolving, and will
offer even more possibilities.

These technology trends offer
unprecedented opportunities and it is
tempting to consider many disrupting
business services as being the result of a
technology push. However, there is more in
play here. More and more companies are,
for example, moving from an inside-out to
an outside-in marketing approach19, which
has a profound effect on the requirements
of their application platform(s). Basically,
an inside-out approach focusses on
improving the company’s strengths that are
already there. A huge drawback is that it
has more focus on the current business
than on what is needed for the future
business. The outside-in marketing
approach starts with the customer’s needs

27

and translates these to the business goals.
The outside-in model will incorporate
innovations that align with customer needs
in a more natural way. These innovations
will lead to new business goals and the
corresponding strategic actions. In turn,
these strategic actions then bubble down
via business processes to applications -
running on an application platform.

The application platforms have to
accommodate all these changes and
innovations:
• faster than before

Business - goal

Strategic - actions

Business process - changes

Appliction - changes

Application platform - changes

ou
ts

id
e-

in

• with better user experience
• with better quality
• with an open and interoperable digital

ecosystem

As a result, organizations must build
applications and application platforms
that match with their business needs. As
mentioned in the introduction, the link
between business and IT is getting tighter
and tighter. Which, not unimportantly, in
many organizations reflects by moving IT
budget directly to the business.

Application Modernization and the
Business
Most organizations have a – sometimes
large – investment in bespoke application
platforms. These were developed to fulfill
business requirements that were needed
at a certain point in time. Over time, the
world has changed and at some point, the
match between business requirements
and application functionality becomes

insufficient: a gap that needs to be
addressed. There are several ways to do
so. Rewrite the bespoke application from
scratch is an option. Or, perhaps currently
a COTS (SaaS?) application is available
that meets the business requirements. But
both of these options may result in major
application implementation projects and
they both do not protect the investment in
the existing bespoke application. In many
cases, application modernization may be
an appealing business option for updating
the current, existing application.

Changing business needs can pose
application challenges that Application
Modernization can address:

 z Vendor lock-in / application lifecycle
management
Migration of (parts of) an application from
an old or even obsolete technology stack
to a more modern technology stack.

28

 z Scalability
Increase scalability of (parts of) an
application so it can handle larger
workloads.

 z Agility and maintainability
Increase agility and maintainability of an
application by breaking it up in mutually
independent parts that are hence easier to
change and maintain.

 z Robustness
Increase robustness by applying the
appropriate Cloud technologies and
optionally breaking the application up in
mutually independent parts, i.e. parts that
can operate/fail without affecting each
other.

 z Advanced functionality
Adding new application functionality that
uses new technologies, e.g. adding a
Virtual Reality capability.

 z Security and privacy
Security and privacy demands are getting
more important, and older applications
may not be able to keep up with these
demands.

 z Rebuild
Rebuild (parts of) the application to
optimally use the Cloud advantages e.g.
for optimizing costs, better security,
monitoring, etc.

Application Modernization – as previously
explained– usually is a process where an
application is changed – modernized – in
multiple steps. These steps will not only
avoid big-bang approaches, but will also
allow for focus on the business needs.
A step-by-step approach will ensure that
each step delivers the business value most
needed at that moment.

By now, it is clear that Application
Modernization protects investments in

a bespoke application. However, most
organizations do not really establish
the value of their existing IT systems,
let alone base their decisions on it. The
decisions for Application Modernization
are mostly made by the business, and are
heavily influenced by velocity: Application
Modernization can often deliver solutions
in a shorter term.

However, some application challenges
can’t be addressed by Application
Modernization. Therefore, a thorough
analysis of the application roadmap
and the current application (technical)
state must be done up front, in order
to understand what exactly Application
Modernization can offer for a specific
application.

An example – the oil terminal
A typical example of Application
Modernization starts with an Oil Terminal
that has an Oil Terminal Management

29

application that keeps track of all product
movement and what product is stored in
an oil tank. The Oil Terminal Management
application is a bespoke application that
has many specific features for the Oil
terminal and hence represents a large
investment and – also important – it
cannot be simply replaced by a COTS
Terminal Management application.

Now, a business initiative is started that
aims to increase safety on the Oil terminal,
and one of the ideas is to provide field
workers with glasses that they put on when
starting their work on the Oil terminal.
When they look at an oil tank, the glasses
would display information about what is
stored in the oil tank.

The idea in itself sounds feasible, but the
solution is not straightforward. The new
functionality is linked with the existing
Terminal Management system for its
data, process states and authorization

mechanisms. Simultaneously, it is clear
that implementing even more new
functionality in the already existing
application and its outdated technology
stack would not be feasible. It would
simply be too complex and costly.

As an alternative route, an application
modernization approach can be taken:

1. The existing application is extended
with some APIs.

2. The AR solution is built in the AWS
Sumerian managed cloud service.

3. A Sumerian / AR compatible set of
glasses is selected.

UI

Monolith

Terminal
management system

UI

Monolith

API

1 2 3

Terminal
management system

AWS
Sumerian

30

3.2 Organization aspects

Digital Transformation initiatives will
affect most, if not all departments in
an organization. A complete Digital
Transformation strategy will cover the
impact on all departments, but that is,
understandably I presume, beyond the
scope of this paper. This section focuses
solely on how the application development
activities in your IT department are
affected by such a strategy.

The consequences of the current
technology trends can be huge, sometimes
even disruptive to your business and
organization. That being said, it’s important
to have the right perspective on what
‘disruptive’ means for you company. When
you Google the term ‘disruptive quotes’7,
you will find a lot of inspirational quotes
and interesting people and companies.
However, most of us are not working

at the likes of Apple, LinkedIn, Google,
Spotify, or Netflix, and it is important to
understand that this matters. All of these
hyper disruptive companies are organized
in such a way that they are able to leverage
the Cloud’s potential to meet their business
goals. They have high IT budgets, the
best IT engineers, and can deliver results
to the end user much quicker than their
competition. If no existing technology fits
their needs, they develop it themselves.
Meaning what is disruptive for them, is
something else than what is disruptive
for you.

What you need to consider within the
organizational context, is that even though
the technologies for building advanced
cloud applications are maturing and
becoming more and more readily available,
the real question is if your IT department is

able to develop and maintain applications
with these technologies? Are they up to
that task?

To answer that question, let’s look at some
characteristics of cloud applications,
to understand where it is different from
traditional application development:
Human resource skillset
Most companies have already experienced
that the cloud brings along a shift in the
required skillset from their IT staff. But not
only the skillset changes: also the speed
goes up. Everything needs to go faster.
Faster application delivery, faster adaption
of new technologies. Making the most
important change in the required skillset:
employees must absorb change at higher
speed!

31

Some other examples of changes in the
skillset:

• Less work on platforms and systems
management, especially when
managed services in a public cloud are
used.

• More focus on development of
application (business) logic.

• Network and security aspects require
more attention, especially when using
(multiple) public clouds.

• Costs control shifts from an APEX to
an OPEX which has to be taken into
account when designing solutions.

• In general, the (speed of) introduction
of new technologies requires a
different mindset.

• The application development and
delivery is more and more automated,
making infrastructure-as-code, CI/
CD and automated testing essential
elements.

This transition in skillset should not
be underestimated. A good sourcing
strategy will help to make this
transition a success. In addition, a
trusted partner that can supply the
required knowledge and resources can
speed up this transition.

Teams
Typically, cloud application development
is done best in DevOps teams, i.e. teams
where Application Development and
Operations are combined. Lately, the term
BusDevOps has been coined to stress that
also the business should be represented
in the application development team. The
idea behind (Bus)DevOps is that when the
involved disciplines are combined into one
single team, their communication will be
easier and faster. Hence, new business
requirements can be implemented much
quicker. Furthermore, the feedback loop
on how the application works on the
production system is also much quicker.

A key success factor for this to work is
team size. A popular quote by Jeff Bezos
is that ‘a team shouldn’t be larger than two
pizzas can feed’8. It is easy to see that if a
team gets too large, it will become slow.
However, there is also Conway’s Law5 that
implies that an application must reflect
the (structure of) the organization […] and
the development teams organization must
reflect the structure of the application.

In short, flexible and high speed
application development speed
requires an application design and
development teams that match with
how the application is or will be used in
the organization.

But, a team is not a stand-alone unit in an
organization. A team may need to discuss
topics with managers, influencers, users,
business process designers, etc. Resulting
in the boundary condition that all the non-
team resources must be easily accessible,
or they will slow down the team.

32

Supporting activities
This ‘application-development-need-for-
speed’ leads to autonomous BusDevOps
teams in which as many decisions as
possible are made within the team itself.
However, this decision making has its
limits. For example, an architect may
need to approve technology choices. Or a
training department may need to prepare
training material for a new application
functionality. Or the release board may
need to coordinate with the marketing
department when something goes into
production. All of these supporting
activities need to be considered carefully:
if the release board only allows new
application release 4 times per year, it
does not make much sense to be able to
deliver new application functionality on
a weekly basis… So, supporting activities
may become a bottleneck that needs to be
addressed.

Supporting activities that may need to
change (or need to be implemented) are:

• Release strategy
• Disaster recovery
• Consistency bridges between old and

new
• Fallback scenario’s
• Exit strategy

Transition phase
Most organizations don’t start from
scratch on development of cloud
applications. For example, an organization
may already have moved part of their IT
infrastructure to a public cloud, so its IT
department is already familiar with certain
cloud technologies. Also, application
development may already be working on
agile projects that work in DevOps style.
Nevertheless, it is recommended to clearly
assess if the IT department’s current
status matches with what is required for
successful cloud application development.

If the IT department is not ready,
measures must be taken to address the
shortcomings. Think of measures like:

• training current IT staff;
• hiring external staff ;
• establishing relations with trusted IT

partners, and partnering with expert
companies;

• establish a separate cloud expertise
center.

These measures are often only temporary,
‘just to get started’. However, a well-
balanced set of measures will help
an organization to get up to speed
quickly (again … speed). Therefore,
it’s recommended to explicitly plan a
‘transition phase’, which ensures the
organization transforms into one that can
handle whatever the cloud throws at them.

33

3.3 Application Modernization success factors

As said, an application modernization
project is likely to be part of an overall
digital transformation program in an
organization. But, even if it is not, there
are many digital transformation success
factors that can be directly applied to an
application modernization project. A list of
the main ones, inspired by AWS16:

 z Executive Buy-In
Modernizing an application is not a simple
IT-only technical activity. It will affect many
stakeholders throughout the organization
and therefore support on the highest level
is needed, especially when things get
difficult (and I promise you, they will). If
the application modernization is driven
by the IT department, the CIO may be a
good choice. However, if the application

modernization is driven by a business
initiative, an executive that is linked to that
business is recommended to represent the
program on the highest level.

 z IT Staff Alignment
All IT staff needs to be on board, so the
application modernization activities need
to be clear to all involved IT Staff. The need
to be involved, updated regularly and their

34

concerns must be addressed.
Application Modernization Strategy
When an application is modernized, there
will be some intermediate stages. A
strategy must be determined that outlines
what steps will be taken and how the
transition phases look like. Such a strategy
takes business needs and technical and
organizational constraints into account.
The link between the strategy and the
vision and mission of the organization
must be made.

 z Quick Wins
The application modernization project
must deliver a quick win, to convince
the whole organization that this is a
worthwhile effort. Preferably this quick win
has business value and low technical risk.

 z Cloud Center of Excellence
Depending on the size and complexity of
the application modernization project, it
may be a good idea to establish a separate
Cloud Center of Excellence team that helps
other teams. This team can supply to other
teams knowledge and best practices, set
architecture guidelines, etc.

 z Partner Engagement
Where the existing IT organization lacks
knowledge and experience, external
partners must be engaged to deliver this.
These partners must not play a supplier
role: the partners must commit to the
program’s results and even have decision-
making powers.

35

4. Summary
Lots of organizations use public clouds like AWS, Azure and Google widely for running
their IT workloads. Cloud applications promise many advantages: lower costs, more
flexible applications, better scalability, etc. It is therefore no surprise that many
organizations have a cloud strategy in place that outlines how they want to take advantage
of the cloud. But, by now it is clear that cloud benefits aren’t always achieved: simply
running an application on a computer in the cloud does not make the application more
flexible. Also, not all applications can be easily scaled. The traditional way of building
applications had to change: new cloud technologies with their own set of best practices
are maturing and make it possible for everyone to build cloud applications that benefit
from what the cloud has to offer. As this maturation goes on, these technologies become
increasingly accessible for organizations that don’t have the size of a Google, Facebook,
LinkedIn, Uber, Spotify, Netflix, Uber etc.

When it became clear that cloud
applications should be built differently
than traditional applications, a new
challenge presented itself: what to
do with the existing base of bespoke
applications? These applications were
built with traditional technologies and

using concepts that would block them
from taking advantage of the cloud.
Often, they represent large investments,
which would be lost if the application was
rebuilt from scratch. As it turns out, in
most cases applications can be partially
modernized: application modernization.

For example, parts of an applications can
be restructured, or new cloud technologies
can be incorporated in specific parts of
the application. This tailored approach
can improve an existing application step-
by-step, making it better suited to run in
the cloud and still optimally safeguard the
large investment.

It is important to understand that the cloud
does not solely affects the IT department.
The key concept here is ‘speed’: almost
without exception, organizations want
their applications to faster deliver the
desired functionality! This need for speed
is only partially addressed by the technical
solutions. It also requires the organization
to transform the way business and IT work
together. This often requires a full Digital
Transformation approach that will impact
many departments.

36

It will be clear that taking full advantage
of what the cloud has to offer can be
complex. Your organization may have to
undertake a journey that affects many
departments. However,increasingly
available experience and best practices
can teach you how to do so successfully.
Making the only question left: what’s
holding you back?

37

ABOUT ILIONX

ilionx is an IT service provider that helps organizations stay
ahead. Since its foundation in 2002, ilionx has been supporting its
customers as a digital partner in the field of business innovations,
applications, data analytics and cloud & security. ilionx offers
specialist knowledge, is agile and flexible and has the ability and
scale to successfully implement large projects. This has led to many
successful projects for healthcare institutions, local authorities
and companies, such as NN, KLM, UMCG, ABN AMRO, ASML, Sligro
Food Group, KPN, VodafoneZiggo, various municipalities and a large
number of hospitals.

Since 2017, Egeria has a majority stake in ilionx. In 2018, ilionx
merged with QNH Consulting, in 2019 the company took over ICTZ
and in 2021 integration specialist Rubix, consultancy Le Blanc Advies
and Salesforce partner Redbook ICT also joined ilionx. The company
has more than 1,000 employees and is located in Groningen,
Amsterdam, Utrecht, Zwolle, Maastricht, Den Bosch, Eindhoven and
Hoorn. More information can be found at www.ilionx.com or follow
ilionx on Twitter, Facebook or LinkedIn.

At ilionx we have the people and knowledge
to help you with all steps of your Application
Modernization journey, whether you just
embarked or are an experienced ‘traveller’.

Are you interested in Application
Modernization as a solution to meet
progressing business requirements?
Then feel free to contact Thijs Iding,
Account manager at ilionx:

 tiding@ilionx.com
 +31 6 12 291 528

http://www.ilionx.com
https://twitter.com/ilionx
https://www.facebook.com/ilionx/
https://www.linkedin.com/company/ilionx/
mailto:?subject=

38

References
All internet based references are retrieved in Jan-Feb 2020.

1. NIST original Cloud Definition, July 2009, https://www.nist.gov/system/files/documents/itl/

cloud/cloud-def-v15.pdf

2. NIST final Cloud Definition, Sep 2011, https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-145.pdf

3. 6 Strategies for Migrating Applications to the Cloud, Nov 2016, https://aws.amazon.com/

blogs/enterprise-strategy/6-strategies-for-migrating-applications-to-the-cloud/

4. Open Platform Migration Guide, 2018, https://www.redhat.com/cms/managed-files/pa-

platform-migration-guide-technology-detail-f10427bf-201802-en.pdf

5. Conway’s Law, https://en.wikipedia.org/wiki/Conway%27s_law

6. Gartner, Top 10 Strategic Technology Trends for 2020, Published: 21 October 2019, ID:

G00432920

7. Google on disruption quotes, 2020, https://www.google.com/search?q=disruption+quotes+

8. Jeff Bezos ‘two pizza rule’, https://www.cnbc.com/2018/04/30/jeff-bezos-2-pizza-rule-can-

help-you-hold-more-productive-meetings.html

9. Microservices, 25 March 2014, https://martinfowler.com/articles/microservices.html

10. AWS re:Invent 2019: [REPEAT 1] Running Kubernetes at Amazon scale using Amazon EKS

(CON212-R1), https://www.youtube.com/watch?v=M-Fh0OzliJI

11. Berke Sokhan, ThoughtWorks, Domain Driven Design for Services Architecture , https://www.

thoughtworks.com/insights/blog/domain-driven-design-services-architecture

12. Domain Driven Design, Eric Evans, 2004, https://www.amazon.co.uk/Domain-Driven-Design-

Tackling-Complexity-Software-ebook/dp/B00794TAUG

13. The Twelve-Factor App, https://12factor.net/

14. StranglerFigApplication, Martin Fowler, 29 June 2004 https://martinfowler.com/bliki/

StranglerFigApplication.html

15. Time to strangle your Monolith to Microservices, Manish Tripathy, 9 April 2019, https://

medium.com/@manisht/strangle-that-monolith-the-strangler-pattern-40c9eeb94402

16. 7 Essentials for a Successful Cloud-First Transformation, AWS, 2016, https://pages.awscloud.

com/7-Essentials-for-a-Successful-Cloud-first-Transformation-S.html

17. Digital Transformation, Wikipedia, November 2020, https://en.wikipedia.org/wiki/Digital_

transformation#cite_note-11

18. World Economic Forum, Klaus Schwab, The Fourth Industrial Revolution: what it means, how

to respond, 14 Jan 2016, https://www.weforum.org/agenda/2016/01/the-fourth-industrial-

revolution-what-it-means-and-how-to-respond/

19. Inside-Out Strategy VS. Outside-In Strategy: Which Marketing Approach Is Best?, Thomas

Ahn, 27 maart 2019 , https://viralsolutions.net/inside-out-strategy-vs-outside-in-strategy/#.

X8lRH7Mo_-g

20. Digital twin, Wikipedia, https://en.wikipedia.org/wiki/Digital_twin

Photo credits: Pexels.com

Aleksandar Pasaric 2411688

Aleksejs Bergmanis 681335

Deva Darshan 1123972

Edgar Hernandez 783944

Guilherme Rossi 1755683

Kehn Hermano 3849167

Luis Gomes 546819

Layout and illustrations

Dikke Huisstijl / Wout Reinders

https://www.nist.gov/system/files/documents/itl/cloud/cloud-def-v15.pdf
https://www.nist.gov/system/files/documents/itl/cloud/cloud-def-v15.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://aws.amazon.com/blogs/enterprise-strategy/6-strategies-for-migrating-applications-to-the-cloud/
https://aws.amazon.com/blogs/enterprise-strategy/6-strategies-for-migrating-applications-to-the-cloud/
https://www.redhat.com/cms/managed-files/pa-platform-migration-guide-technology-detail-f10427bf-201802-en.pdf
https://www.redhat.com/cms/managed-files/pa-platform-migration-guide-technology-detail-f10427bf-201802-en.pdf
https://en.wikipedia.org/wiki/Conway%27s_law
https://www.google.com/search?q=disruption+quotes+
https://www.cnbc.com/2018/04/30/jeff-bezos-2-pizza-rule-can-help-you-hold-more-productive-meetings.html
https://www.cnbc.com/2018/04/30/jeff-bezos-2-pizza-rule-can-help-you-hold-more-productive-meetings.html
https://martinfowler.com/articles/microservices.html
https://www.youtube.com/watch?v=M-Fh0OzliJI
https://www.thoughtworks.com/insights/blog/domain-driven-design-services-architecture
https://www.thoughtworks.com/insights/blog/domain-driven-design-services-architecture
https://www.amazon.co.uk/Domain-Driven-Design-Tackling-Complexity-Software-ebook/dp/B00794TAUG
https://www.amazon.co.uk/Domain-Driven-Design-Tackling-Complexity-Software-ebook/dp/B00794TAUG
http://factor.net/
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://medium.com/
https://medium.com/
https://pages.awscloud.com/7-Essentials-for-a-Successful-Cloud-first-Transformation-S.html
https://pages.awscloud.com/7-Essentials-for-a-Successful-Cloud-first-Transformation-S.html
https://en.wikipedia.org/wiki/Digital_transformation#cite_note-11
https://en.wikipedia.org/wiki/Digital_transformation#cite_note-11
https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/
https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/
https://viralsolutions.net/inside-out-strategy-vs-outside-in-strategy/#.X8lRH7Mo_-g
https://viralsolutions.net/inside-out-strategy-vs-outside-in-strategy/#.X8lRH7Mo_-g
https://en.wikipedia.org/wiki/Digital_twin
https://www.dikkehuisstijl.nl

	1. Introduction
	2. Applications in the Cloud
	2.1 Cloud Phase 1: Lift-and-Shift
	2.2 Cloud Phase 2: Re-factoring
	2.2.1 Cloud Native Application Development
	2.2.2 Cloud Native Technologies
	2.3 Cloud Phase 3: Application Modernization

	3 Digital Transformation
	and Application Modernization
	3.1 Business opportunities
	3.1 Business opportunities
	3.3 Application Modernization success factors
	References

