
- 1 -

The overambitious API Gateway

WHITE PAPER
Pim Gaemers
april 2019

- 2 -

- 3 -

Inhoud

The overambitious API Gateway	 4

Separation of concerns	 4

Remember ESB’s	 7

What about the vendors?	 8

What about devops and distributed gateways?	 9

Dependencies and migration paths	 9

API Gateway! = API’s	 10

Don’t blame the vendors	 13

Conclusion	 14

- 4 -

The overambitious API Gateway
For a couple of years in a now, Thoughtworks has mentioned to hold
the “overambitious API Gateway” in their Techradar (https://www.
thought works.com/radar/platforms/overambitious-api-gateways).
Yet in a growing market for API Gateways, and in an attempt to
differentiate themselves from the competition, vendors keep adding
new features and functionality in their product, blurring the line between
business domains and infrastructure. In certain cases, the API Gateway
even looks and feels like a full fledged integration platform or, dare
I say it, ESB.

Being quite unique in featuring a single entry for multiple editions of
the Techradar in the hold position, the “overambitious API Gateway”
deserves a closer look, together with the concerns and risks that come
with it.

Separation of concerns

The crux of the matter lies in the specificity of certain functions and
the way the API Gateway is positioned in the overall IT landscape.
Traditionally the API Gateway is used as a shared component in the
infrastructure of the IT landscape, providing a narrow set of generic
functions. With generic functions, we mean that the functions provided
by the API Gateway are not bound to specific business functions or to a
specific business domain. Whether used in the HR process or the sales
process, is indifferent to the API Gateway. No specific functionality
or information regarding the HR or Sales processes is embedded in
the API Gateway. Instead, the API Gateway can be viewed similar to
an infrastructure component like a corporate firewall or proxy. The

‘Implementing business specific logic in a shared
infrastructure component is almost never a good idea.’

- 5 -

result of this, is that the API Gateway can be highly optimized for the
functions it needs to implement, most notably API authentication and
rate limiting. Operational processes regarding the API Gateway can be
optimized, and the required skillset can be specific for the API Gateway.
This makes rolling out an API Gateway, operating it and adding to it an
optimized and clear cut process, well suited for automation.

However, with the emergence of new capabilities in API Gateway
products, like transformation and orchestration, the line between the
generic and business functions becomes murky at best. The problem
with these functions is they can no longer be separated from the
underlying data and/or functionality of the API’s in the backend. Having
the capability to transform payloads and perform orchestration seems
innocuous, but like we have seen time and again in the world of IT, this

Presentation Layers

Distributed Services

Application Layers

Domain / Business Layers

Data Persistence / Access LayersCr
os

s-
cu

tt
in

g
In

fr
as

tr
uc

tu
re

 L
ay

er
s

(S
ec

ur
ity

, O
pe

ra
tio

ns
, C

ac
he

, e
tc

.)

Data
Sources

External
Services

API Gateway falls into the cross-cutting infrastructure layer and
should not contain any functionality of any other layer

- 6 -

opens the door to more and more functionality inside the API Gateway,
thereby ever increasing the dependency to the different API’s in the
backend. This makes the software delivery process long and error
prone, an occurance sometimes also dubbed as the “integration hell”.

From a practical point of view, the consequences of these interwoven
capabilities can manifest themselves in the form of a more complex
software delivery process and organization, resulting in longer time
to market of new features and functionality and, arguably even more
important, in a longer time-frame regarding fixing bugs and outages.

These longer and more complex software delivery lead times and
operational inefficiencies are usually profoundly increased when the
team responsible for the application or API, differs from the team
responsible for the API Gateway. When different teams are involved,
additional burden is placed on the API Gateway team, who now not

Software delivery involving multiple
teams can become complex very quickly

- 7 -

only has to operate and maintain the API Gateway itself, but also must
have the additional capability and knowledge of implementing and
maintaining the business related functions often specific to certain
business domains or departments. This additional responsibility often
strains the API Gateway team to such an effect that it becomes the
bottleneck in the organization for software delivery and maintenance,
since it has to be performed for a multitude of applications/API’s.

On the support side of things, this can result in a more complex and
therefore often longer and more expensive resolution of support
calls. Making a quick an clear cut analysis of the problem becomes
increasingly difficult when the functionality of certain API’s is split in
the backend API and the API Gateway.

Even when initially a clear separation is defined between the API’s
and the API Gateway, when under time pressure to quickly resolve
an incident, the API Gateway team can implement a fix in the API
Gateway that, based on architecture principles and design practices,
ideally should be resolved in the backend API. Thereby introducing
architectural and technical debt, resulting in a degrading architecture
over time, bringing closer the ever dreaded “integration hell”.

Remember ESB’s

This, of course, is nothing new in the world of tech and enterprise
software. The industry has only just rebounded from numerously
failed ESB implementations. And the new trend to move away from
centralized managed integration hubs to a more distributed approach.

An excellent article about the detriments of ESB’s was

written some time ago by Andy Hedges: https://blog.hedges.

net/2014/01/20/why-you-dont-need-an-enterprise-service-

bus-esb/

- 8 -

These vendor driven centralized systems had a tendency to turn into
gigantic monoliths: difficult to implement and even more difficult to
maintain. Often directed from a centralized specific ESB or integration
team, vendor specific expertise was required to build and operate the
services deployed on the ESB. Creating the very bottleneck we now
slowly see emerging in the API Gateway.

No wonder this led to the trend of microservices with “dump pipes and
smart endpoints”. Which essentially reduces any shared components
to either infrastructure or eliminates them all together. Accompanied
with software development approaches like domain driven design and
the hexagonal architecture components, systems become smaller and
more specific. Which comes as no surprise. Going all the way back to
the early days of Unix: it is better to do one thing and do it well. http://
dotadiw.com/

In its “pure form”, the API Gateway still is an exceptionally good fit in any
microservice architecture, as well as in a lot of traditional architectures.
It then provides generic infrastructure capabilities to the microservices
whose responsibility it is to implement a certain business feature.
Not to mention the additional benefit of often having the entire API
Management capabilities integrated in the solution. Of course that last
benefit still holds true for any API Gateway, overambitious or not.

What about the vendors?

It seems a lot of API Gateway vendors are again opening the doors to
the ESB anti-patterns we all were glad to leave behind only a few years
ago. This hardly comes as a surprise, since the entire ESB market was
highly dominated by large software vendors until recently. Offering
specific IDE’s and other tooling for implementing and operating

‘The latest trend in API Management probably is
distributed API Gateways.’

- 9 -

services on the ESB, the knowledge and expertise needed for this
were highly specific as well. The result being a lack of integration with
configuration and automation tools, making delivering software often
a manual and archaic undertaking.

What about devops and distributed gateways?

The latest trend in API Management probably is distributed API
Gateways. Stepping on the shoulders of the earlier rise of the service
mesh, a distributed API Gateway can, among other things, offer
reduced latency, more specific configuration, and increased security.
With distributed gateways, the gateway is often deployed right along
with the application/API and is tailored to the specific application, as
opposed to the traditionally used shared API Gateway. For example, it
is deployed as a sidecar container when used in a Kubernetes cluster.

To be clear, there’s nothing against having such distributed gateways.
Depending on the overall architecture, they often are an excellent idea,
not only for east-west traffic, but also for north-south traffic.

But it is important to note that from a component point of view, there
still is a distinction between the application itself and the API Gateway.
Implementation details, like programming languages and frameworks,
as well as required tooling for development and deployment, likely differ
in between applications , resulting in different tooling and lifecycles for
these components.

Dependencies and migration paths

Even if both the API Gateway and the backend application/API are
owned by the same Dev/Ops team, it is still worth considering to keep
business related functions out of the API Gateway. When these are
interwoven in our overambitious API Gateway, the dependency with the
backend application/API containing the business logic, becomes very
strong, making a migration path or lifecycle update more complex. For

- 10 -

every change, whether technical of business driven, a careful analysis
must be performed where to perform it. Not only time to market
should be considered, but also operational efficiency. Migrating the
API Gateway itself to another platform or vendor, or migrating the
underlying application/API, becomes dramatically more complex since
functions are spread out over multiple components.

API Gateway! = API’s

When thinking about the overall API landscape, and its realization in
what often gets called ‘the API program’, it is important to distinguish
the different aspects and components. To clarify, the overall API
landscape can be broadly categorized into four distinct parts:

	 1. The API Gateway(s)

	 2.	 The API Manager	

	 3.	 Developer portal

	 4.	 API’s

API Gateway
Transformation here?

Transformation here?

Transformation here?

Transformation here?

Storage

API
Microservice

Backend System

- 11 -

‘API strategy and program decisions may seem distant
from the implementation, but they do have an impact on
architectural decisions and design practices later on’

Whereas the API manager provides account-management, analytics
and configuration regarding different subscription models, the
developer portal is used for outside developers to gain access to the
API’s documentation and can be a powerful marketing instrument in
an API strategy. (Which, perhaps, will be a subject for another time.)

The problem with the overambitious API Gateway primarily lies in the
lack of distinction between the API Gateway and the API’s themselves.
And in the overall confusion that the “API Management” platform is not
just for managing API’s, but also for delivering API’s.
This should be mitigated with proper architecture and design principles.
But it serves organizations well to first and foremost think about their
entire API program and API Strategy from a more holistic point of view.
In its essence, an API Program describes three aspects of opening up
data assets and functionality (often via API’s) to a specific, pre-defined,
target audience. An API program should answer the:
	 •	 Value
	 •	 Delivery
	 •	 Capitalization

of an API or entire API program.

This forms the initial basis for an API strategy. An API strategy
contains specific aspects of the API, like what data assets are made

Value

Delivery

Capitalization

- 12 -

available, what functional use cases can be handled, and what are the
more technical/architectural aspects of the API offering. For example,
if GraphQL or REST is being used. Next to the API offering, a target
customer segmentation analysis and the overall API Economy should
be described. In short, what aspects of the API are made available for
whom. Is the API only for internal use, or is it opened up to business
partners or the general public. These aspects may seem distant from
our discussion of the overambitious API Gateway, however, these
considerations do have an impact on the architectural decisions and
design practice later on.

 	 Warning: some oversimplified examples coming up!

For example, an API program and API strategy describe an API
which is made available for internal users as well as public use. The
architectural decision for serving this API is setting up multiple API
Gateways. One inside the corporate network, only to be used by internal
teams for consuming the API, and one additional API Gateway setup
in a public cloud environment used by the general public. Routing
and orchestration functions are likely more prevalent in the internal
gateway, as opposed to the public cloud gateway, hereby effecting the
design decisions for the functionality in the backend API and the API
Gateway. Also, from an operational perspective it most likely is not
beneficial to have a different configuration of gateway running, serving
the same API.

Another simplified example is when the API is better suited using
GraphQL instead of the more traditional REST paradigm. The attributes
of a GraphQL, currently, limit certain aspects of API Gateways, for
example caching and message transformation.

So the overall API program and API strategy do have an effect later on,
on architecture, design, and implementation of the API’s and the API
Gateways used to serve those API’s.

!

- 13 -

API Strategy and API design practices are part of an API program, and
often the API Management solution is as well. However, organizations
tend to place this on top of already existing API’s and services.
Realizing there is a misalignment between their existing services and
API’s, and the API’s in the API Strategy, which are aligned with their
business model and based on solid API design practices, bridging that
gap is often left to the API Gateway., A task it really is not meant for.

Of course every organization and architecture is different, but as a rule
of thumb, there are a couple of don’ts for an API Gateway:

•	 Do not chain/composite API’s in the API Gateway, whether this
is done via orchestration or choreography.

•	 Do not modify HTTP payloads (both request and response) in

any shape or form in the API Gateway.

•	 Do not perform any routing based decisions on domain specific
logic or business rules.

Don’t blame the vendors

Yes, we see a lot of features entering API Management products
which are questionable at least. But nobody is forcing you to use these
features. And it should not be used as an excuse for not doing proper
architecture and design. Or for not thinking about the purpose of API’s,
their delivery mechanisms, and how they benefit the organization in
the first place. But instead leaning solely on the features of an API
Management platform and deliver API’s in a unstructured ad hoc
manner, aka doing it on the fly.
In the end, it is the organization itself that has to come up with a proper
solution which is manageable in the long term. Whether this means
keeping the API Gateway as “thin” as possible, or deciding to leverage
all the functionality the platform offers.

- 14 -

But do keep in mind the overall value for money. API Gateways come in
various pricing brackets and although not always directly correlated to
the number of features and functionalities available, it is still worth to
critically evaluate the different offerings based on the architecture and
design practices you plan to adopt in your API program.

Conclusion

No matter whether you are using an overambitious API Gateway, or
even an ESB, it seems that with the increasing amount of features,
integration platforms, and enterprise middleware offers, it’s often too
tempting for teams not to use these features. For instance for initially
delivering a new API quickly, so they don’t have to bother the backend
team managing the API, or for quickly resolving that production
issue themselves, instead of dispatching the issue to the responsible
team. Whilst these overambitious API Gateways can have desirable
functionality for certain organizations, be weary of them, as down
the line they often become a massive burden for development and
operation teams.

- 15 -

Do you want to know more about what Rubix can do in
regard to safeguarding you against, or rescueing you from,
using your API Gateway as an ESB?

Just give us a call at +31 73 7303316 and ask for Marc
Kuijpers or send us a contact request: mkuijpers@ilionx.com

- 16 -

www.ilionx.com
Bolduc - gebouw A

Utopialaan 58
5232 CE ‘s-Hertogenbosch

	The overambitious API Gateway
	Separation of concerns
	Remember ESB’s
	What about the vendors?
	What about devops and distributed gateways?
	
Dependencies and migration paths
	API Gateway! = API’s
	Don’t blame the vendors
	Conclusion

